Application of Neural Network in Diagnosing Neuromuscular Disorder using EMG Signal
نویسندگان
چکیده
Since past few years, researchers have been concentrating on the classification of Electromyography Signal. This method is very convenient in diagnosing the neuro-muscular disorders, which consists of wide spread diseases affecting peripheral nervous system. Progressive muscle weakness is the major form of these disorders. Out of various proposed methods, scholars are commonly focusing on Neural Network for its accuracy. And the basic variant feature, Motor Unit Action Potential is selected for classification. Out of various available tools, this research uses Discrete Wavelet Transform as a tool for classification and for the training of N-Network, a multilayer feed forward neural network with back propagation algorithm is used.
منابع مشابه
A Hybrid Classifier for Characterizing Motor Unit Action Potentials in Diagnosing Neuromuscular Disorders
Background: The time and frequency features of motor unit action potentials (MUAPs) extracted from electromyographic (EMG) signal provide discriminative information for diagnosis and treatment of neuromuscular disorders. However, the results of conventional automatic diagnosis methods using MUAP features is not convincing yet.Objective: The main goal in designing a MUAP characterization system ...
متن کاملIdentification of Neuromuscular Disorder by Classifying EMG Signal usingneural network
Since past few years, researchers have been concentrating on the classification of Electromyography Signal. This method is very useful in diagnosing the neuro-muscular disorders, which consists of wide spread diseases affecting peripheral nervous system. Progressive muscle weakness is the major form of these disorders. Out of various proposed methods, scholars are commonly focusing on Neural Ne...
متن کاملUtilization of Levenberg-Marquardt based Neural Network Classifier in EMG signal Classification
Abstract— Electromyography (EMG) signal provides a significant source of information for identification of neuromuscular disorders. This paper presents an application of neural network classifier on classification and identification of different normal and auto aggressive actions of hands and legs. Eight features that are extracted from eight channel EMG signals representing these actions have ...
متن کاملGenetics-based machine learning for the assessment of certain neuromuscular disorders
Clinical electromyography (EMG) provides useful information for the diagnosis of neuromuscular disorders. The utility of artificial neural networks (ANN's) in classifying EMG data trained with backpropagation or Rohonen's self-organizing feature maps algorithm has recently been demonstrated. The objective of this study is to investigate how genetics-based machine learning (GBML) can be applied ...
متن کاملPrediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model
Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...
متن کامل